

A Convenient Synthesis of *cis*-3-Aryl-2-Azetidinones¹ Ajay K. Bose and J. C. Kapur Department of Chemistry and Chemical Engineering Stevens Institute of Technology Hoboken, N.J. 07030

(Received in USA 16 February 1973; received in UK for publication 3 April 1973)

Denney and Sherman² have described a molecular rearrangement mediated by m-chloroperoxybenzoic acid for the efficient conversion of the acid chloride $\frac{1}{2}$ to the ester $\frac{2}{4}$. In the course of our studies on the synthesis of substituted β -lactams we became interested in the application of this method to a β -lactam acid chloride to obtain a 3-hydroxy-2-azetidinone derivative.

Acid chloride- β -lactams $\frac{4}{2}$ (a-d) were prepared in good yield by refluxing phenylmalonyl chloride with the appropriate imine $\frac{3}{2}$ in benzene according to the method of Ziegler et al.³ m-Chloroperoxybenzoic acid was added to the β -lactam $\frac{4}{2}$ in dichloromethane at 0^o followed by dropwise addition of triethylamine. The reaction mixture was stirred overnight and then washed with 5% sodium bicarbonate, water and dried over MgSO₄ and stripped of solvent. The material so obtained was purified by column chromatography and crystallization. To our surprise, the products proved to be the β -lactams $\frac{5}{2}$ (a-d). PMR spectroscopy showed that in each case the *cis* isomer was produced exclusively.

Ziegler et al³ have hydrolyzed the β -lactam acid chloride ξ with dilute acetic acid to the acid χ and decarboxylated χ to ξ by fusion. Repetition of this work and PMR examination of the product revealed that a *cis*- β -lactam had been formed. But the acid chloride β -lactam ξ did not react with m-chloroperoxybenzoic acid.

To obtain information about reaction mechanism, it was decided to study the stereochemistry of decarboxylation of the free acid corresponding to $\frac{4}{3}$. Attempts to hydrolyze $\frac{4}{3}$ by the method successfully used by Ziegler and coworkers for 6 led, however, to the scission of the β -lactam ring. On the other hand, reaction with methanol gave the β -lactam methyl ester 9 readily. Saponification of 9 without cleavage of the β -lactam ring was not possible. Treatment of $\frac{4}{3}$ with benzyl alcohol gave the benzyl ester 10 which could be hydrogenated over Pd/C to the free acid 11. Since the thermolysis of 11 gave the *cis* β -lactam 5 $\frac{1}{3}$, it is possible that this acid 11 is an intermediate in the transformation of $\frac{4}{3}$ to 5. On the basis of data at hand, however, it is difficult to account satisfactorily for the divergence between $\frac{4}{3}$ and $\frac{6}{3}$ in this reaction with m-chloroperoxybenzoic acid or dilute acetic acid. Further studies on No. 21

the mechanism of the conversion of $\frac{4}{2}$ to $\frac{5}{2}$ under the influence of m-chloroperoxybenzoic acid are necessary.

Since decarboxylation usually takes place with retention of configuration, it would appear that the β -lactam formation from the substituted malonyl chloride proceeds stereospecifically to the E form of $\frac{4}{2}$. Furthermore, in the conversion of $\frac{4}{2}$ to 5, an explicit anion at C-3 is unlikely to be involved since such an anion has been shown to rearrange a *cis* β -lactam to its more stable *trans* form.⁴

It is interesting to note that a previous synthesis⁵ by a direct method, namely the reaction of phenylacetyl chloride with N-benzylideneaniline in presence of triethylamine, produced the *trans* isomer of 5a exclusively.

Notwithstanding the lack of mechanistic details, m-chloroperoxybenzoic acid mediated facile dechlorocarbonylation of readily available β -lactams of type $\frac{4}{2}$ constitutes a short, stereospecific synthesis⁶ of *cis*-3-aryl-2-azetidinones. In recent years *cis*- β -lactams have assumed importance because some appropriately substituted members of this family have been used as key intermediates in the synthesis of penicillins, cephalosporins, and analogs.⁷

All the new compounds reported in this communication have been characterized by satisfactory elemental and spectral analyses.

Acknowledgement. We thank Gist-Brocades N.V., The Netherlands, for their support of this research.

REFERENCES

- Part XXIV of "Studies on Lactams". For Part XXIII see A. K. Bose, S.D. Sharma, J.C. Kapur, and M.S. Manhas, Synthesis, 000(1973)
- 2. D. B. Denney and N. Sherman, J. Org. Chem., 30, 3760(1965).
- 3. E. Ziegler and G. Kleinberg, Monatsh Chem., 96, 1239(1965).
- M.S. Manhas and A.K. Bose, "beta-Lactams: Natural and Synthetic part 1", Wiley-Interscience, N.Y., 1969.
- 5. A.K. Bose, Y. H. Chiang, and M.S. Manhas, Tetrahedron Lett., 4091(1972).
- 6. For a stereospecific synthesis of *cis*-β-lactams involving transformations at C-4 instead of at C-3 of 2-azetidinones, see A. K. Bose, B. Dayal, H.P.S. Chawla, and M.S. Manhas, *Tetrahedron Lett.*, 2823(1972).
- R.D.G. Cooper, L.D. Hatfield, and D.O. Spry, Accounts of Chemical Research, 6, 32(1972);
 M. Yoshimoto, S. Ishihara, E. Nakayama, E. Shoji, H. Kuwano, and N. Some, Tetrahedron Lett., 4387(1972); M. Numata. V. Imashiro, I. Minamide, and M. Yamaoka, Tetrahedron Lett., 5097(1972); S. Kukolja, J. Amer. Chem. Soc., 94, 7590(1972); J.H.C. Nayler, M.J. Pearson, and R. Southgate, Chem. Comm., 58(1973).